

Certificate of Analysis

Dec 02, 2021 | Grove Inc

Henderson, NV, 89014, US

Kaycha Labs

Pineapple Express

Matrix: Derivative

Sample: KN11130002-005 Harvest/Lot ID: 211112PE

> Batch#: 211112PE Seed to Sale# N/A

Batch Date: 11/12/21 Sample Size Received: 12 ml

Total Weight/Volume: N/A Retail Product Size: 1 ml

> Ordered: 11/24/21 sampled: 11/24/21

Completed: 12/02/21 Expires: 12/02/22 Sampling Method: SOP Client Method

PASSED

Page 1 of 4

PRODUCT IMAGE

SAFETY RESULTS

Heavy Metals

Microbials

Mycotoxins PASSED

Residuals Solvents **TESTED**

Filth **PASSED**

Water Activity

Moisture

Terpenes

CANNABINOID RESULTS

Total THCO

Total d8-THC 40.337%

Batch Date: 11/30/21 14:41:01

Total Cannabinoids

F	ilth		PASSE	D
Analyzed By	Weight	Extraction date	Extracted By	
1692	0.5101g	NA		N.A
Analyte		LOD	Result	
Filth and Foreign N	1aterial	0.3	ND	
Analysis Method	-SOP.T.40.013	Batch Date: 11/3	0/21 12:55:00	
Analytical Batch Instrument Used Running On :		Reviewed On - 11 licroscope	/30/21 12:58:14	
This includes but is not and by-products. A SW	limited to hair, insec 2T13 Stereo Microsco	ts, feces, packaging contami ope is use for inspection.	nants, and manufacturing i	waste

Cannabinoid Profile Test

Extraction date : Extracted By : -THC:12.7%, THCa: 9.5%, TOTAL THC 11.

Analytical Batch -KN001625POT Instrument Used : HPLC E-SHI-008

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

Lab Director

State License # n/a ISO Accreditation # 17025:2017

12/02/21

Signature

Kaycha Labs

Pineapple Express

Matrix : Derivative

Certificate of Analysis

PASSED

Grove Inc

1710 Whitney Mesa Drive Henderson, NV, 89014, US **Telephone:** (702) 817-2113 **Email:** hadleah@cbd.io Sample : KN11130002-005 Harvest/LOT ID: 211112PE

Batch#:211112PE Sampled:11/24/21 Ordered:11/24/21 Sample Size Received: 12 ml Total Weight/Volume: N/A

Completed: 12/02/21 Expires: 12/02/22 Sample Method: SOP Client Method Page 2 of 4

Pesticides

PASSED

LOD	Units	Action Level	Result
0.01	ppm	0.3	ND
0.01	ppm	3	ND
0.01	ppm	2	ND
0.01	ppm	3	ND
0.01	ppm	0.1	ND
0.01	ppm	3	ND
0.01	ppm	3	ND
0.01	ppm	0.5	ND
0.01	ppm	3	ND
0.01	ppm	0.5	ND
0.01	ppm	0.1	ND
0.01	ppm	3	ND
0.01		3	ND
0.01		0.1	ND
0.01		0.5	ND
0.01	ppm	0.1	ND
0.01	ppm	1	ND
0.01		0.1	ND
0.01		0.2	ND
0.01		0.1	ND
0.01		0.1	ND
			ND
		3	ND
		0.1	ND
			ND
		2	ND
		0.1	ND
			ND
	/ .		ND
			< 0.05
			ND
****		*	ND
		- /	
0.01	ppm	0.2	ND
	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.01 ppm	0.01 ppm 0.3 0.01 ppm 2 0.01 ppm 3 0.01 ppm 0.1 0.01 ppm 3 0.01 ppm 3 0.01 ppm 0.5 0.01 ppm 0.5 0.01 ppm 0.1 0.01 p

Pesticides	LOD	Units	Action Level	Result
PIPERONYL BUTOXIDE	0.01	ppm	3	ND
PRALLETHRIN	0.01	ppm	0.4	ND
PROPICONAZOLE	0.01	ppm	1	ND
PROPOXUR	0.01	ppm	0.1	ND
PYRETHRINS	0.01	ppm	1	ND
PYRIDABEN	0.01	ppm	3	ND
SPINETORAM	0.01	ppm	3	ND
SPIROMESIFEN	0.01	ppm	3	ND
SPIROTETRAMAT	0.01	ppm	3	ND
SPIROXAMINE	0.01	ppm	0.1	ND
TEBUCONAZOLE	0.01	ppm	1	ND
THIACLOPRID	0.01	ppm	0.1	ND
THIAMETHOXAM	0.01	ppm	1	ND
TOTAL SPINOSAD	0.01	ppm	3	ND
TRIFLOXYSTROBIN	0.01	ppm	3	ND

Ö	Pesticides

Analyzed by 143	Weight 0.5075g	Extraction date 12/01/21 09:12:51	Extracted By	
Analysis Method - SOP.T.30.060, SOP.T.40.060 , Analytical Batch - KN001616PES			Reviewed On- 11/30/21 12:58:14	
Instrument Used : E-SF Running On :	II-125 Pesticides		Batch Date: 11/29/21 09:49:59	
Reagent		Dilution	Consums. ID	
110821.R03		10	200618634	
051021.04			947.271	
111521.R03 112221.R23 112221.R24				

Pesticide screen is performed using LC-MS which can screen down to below single digit ppb concentrations for regulated Pesticides. Currently we analyze for 57 Pesticides. (Method: SOP.T.30.060 Sample Preparation for Pesticides Analysis via LCMSMS and SOP.T40.060 Procedure for Pesticide Quantification Using LCMS). Analytes ISO pending. *Based on FL action limits. *

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

Lab Director

State License # n/a ISO Accreditation # 17025:2017 Sulinguan

12/02/21

Signature

Kaycha Labs

Pineapple Express

N/A Matrix : Derivative

PASSED

Certificate of Analysis

Grove Inc

1710 Whitney Mesa Drive Henderson, NV, 89014, US **Telephone:** (702) 817-2113 **Email:** hadleah@cbd.io Sample : KN11130002-005 Harvest/LOT ID: 211112PE

Batch#:211112PE Sampled:11/24/21 Ordered:11/24/21 Sample Size Received : 12 ml
Total Weight/Volume : N/A

Completed: 12/02/21 Expires: 12/02/22 Sample Method: SOP Client Method Page 3 of 4

Residual Solvents

ΓESTΕΙ

Residual Solvents

TESTED

Solvent	LOD	Units	Action Level	Pass/Fail	Resul
PROPANE	500	ppm	2100	PASS	ND
BUTANES (N-BUTANE)	500	ppm	2000	PASS	ND
METHANOL	25	ppm	3000	PASS	ND
ETHYLENE OXIDE	0.5	ppm	5	PASS	4.105
PENTANES (N-PENTANE)	75	ppm	5000	PASS	ND
ETHANOL	500	ppm	5000	PASS	ND
ETHYL ETHER	50	ppm	5000	PASS	ND
1.1-DICHLOROETHENE	0.8	ppm	8	PASS	ND
ACETONE	75	ppm	5000	PASS	ND
2-PROPANOL	50	ppm	500	PASS	>1125
ACETONITRILE	6	ppm	410	PASS	ND
DICHLOROMETHANE	12.5	ppm	600	PASS	ND
N-HEXANE	25	ppm	290	PASS	ND
ETHYL ACETATE	40	ppm	5000	PASS	ND
CHLOROFORM	0.2	ppm	60	PASS	ND
BENZENE	0.1	ppm	2	PASS	ND
1,2-DICHLOROETHANE	0.2	ppm	5	PASS	ND
HEPTANE	500	ppm	5000	PASS	ND
TRICHLOROETHYLENE	2.5	ppm	80	PASS	ND
TOLUENE	15	ppm	890	PASS	ND
TOTAL XYLENES - M, P & 0 - DIMETHYLBENZENE	0 15	ppm	2170	PASS	ND

Analyzed by Weight Extraction date Extracted By

Analyzed by Weight Extraction date Extracted By 0.02444g 12/01/21 04:12:15 138

Analysis Method -SOP.T.40.032

Analytical Batch -KN001627SOL Reviewed On - 12/02/21 15:45:17

Instrument Used: E-SHI-106 Residual Solvents

Running On:

Batch Date: 12/01/21 08:43:13

Reagent	Dilution	Consums. ID
	1	R2017.062
		G201-062

Residual solvents screening is performed using GC-MS which can detect below single digit ppm concentrations. Currently we analyze for 22 residual solvents. (Method: SOP.T.40.032 Residual Solvents Analysis via GC-MS). Analytes ISO pending. *Based on FL action limits.

This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproducibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

Lab Director

State License # n/a ISO Accreditation # 17025:2017

12/02/21

Signature

Kaycha Labs

Pineapple Express

Matrix: Derivative

Certificate of Analysis

PASSED

1710 Whitney Mesa Drive Henderson, NV, 89014, US Telephone: (702) 817-2113 Email: hadleah@cbd.io

Sample: KN11130002-005 Harvest/LOT ID: 211112PE

Batch#:211112PE Sampled: 11/24/21 Ordered: 11/24/21

Result

Sample Size Received: 12 ml Total Weight/Volume: N/A

Completed: 12/02/21 Expires: 12/02/22 Sample Method: SOP Client Method

Page 4 of 4

Microbials

PASSED

Mycotoxins

PASSED

Action Level

0.02

0.02

0.02

Analyte
LISTERIA_MONOCYTOGENE
ESCHERICHIA_COLI_SHIGELLA_SPP
SALMONELLA_SPECIFIC_GENE
ASPERGILLUS_FLAVUS
ASPERGILLUS_FUMIGATUS
ASPERGILLUS_NIGER
ASPERGILLUS TERREUS

not present in 1 gram. not present in 1 gram. not present in 1 gram not present in 1 gram. not present in 1 gram. not present in 1 gram. not present in 1 gram

Analysis Method -SOP.T.40.043

Analytical Batch -KN001626MIC Batch Date: 11/30/21 16:14:18

Instrument Used: Micro E-HEW-069

Running On:

Anaiyzed	Ľ
1692	

Weight	
1.0296g	

Extraction date 11/30/21 04:11:57

LOD

Extracted By

Analyte	LOD	Units
AFLATOXIN G2	0.002	ppm
AFLATOXIN G1	0.002	ppm
AFLATOXIN B2	0.002	ppm

AFLATOXIN B1 OCHRATOXIN A+ TOTAL MYCOTOXINS

0.002 ppm 0.002 ppm Analysis Method -SOP.T.30.060, SOP.T.40.060

ppm

ND 0.02 ND

ND

Result

Analytical Batch -KN001617MYC | Reviewed On - 12/01/21 10:43:04 Instrument Used: E-SHI-125 Mycotoxins

Running On:

Batch Date: 11/29/21 09:51:06

Analyzed by

Weight 0.5075a

Extraction date 12/01/21 09:12:09

Extracted By 143

Dilution

Microbiological testing for Fungal and Bacterial Identification via Polymerase Chain Reaction (PCR) method consisting of sample DNA amplified via tandem Polymerase Chain Reaction (PCR) as a crude lysate which avoids purification. (Method SOP.T.40.043) If a pathogenic Escherichia Coli, Salmonella, Aspergillus figuria pathogenic pathogeni

Aflatoxins B1, B2, G1, G2, and Ochratoxins A testing using LC-MS. (Method: SOP.T.30.060 for Sample Preparation and SOP.T40.060 Procedure for Mycotoxins Quantification Using LCMS, LOQ 1.0 ppb). Total Aflatoxins (Aflotoxin B1, B2, G1, G2) must be <20µg/Kg. Ochratoxins must be <20µg/Kg. Analytes ISO pending. *Based on FL action limits.

Heavy Metals

PASSED

Reagent
100421.02
092121.R22
031620.03
080421.R13
110121.03
040521.R04

Dilution

Consums, ID 7226/0030021 210221060

Metal	LOD	Unit	Result	Action Level	
ARSENIC-AS	0.02	ppm	ND	1.5	
CADMIUM-CD	0.02	ppm	ND	0.5	
MERCURY-HG	0.02	ppm	ND	3	
LEAD-PB	0.02	ppm	ND	0.5	
Analyzed by	Weight	Extraction date		Extracted By	
138	0.2683a	11/30/21 04:11:02		138	

Analysis Method -SOP.T.40.050, SOP.T.30.052

Analytical Batch -KN001620HEA | Reviewed On - 12/02/21 15:41:48

Instrument Used: Metals ICP/MS Running On:

Batch Date: 11/29/21 12:46:00

Heavy Metals screening is performed using ICP-MS (Inductively Coupled Plasma - Mass Spectrometer) which can screen down to below single digit ppb concentrations for regulated heavy metals using Method SOP.T.30.052 Sample Preparation for Heavy Metals Analysis via ICP-MS and SOP.T.40.050 Heavy Metals Analysis via ICP-MS. *Based on FL action limits.

ICP-MS. This report shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. This report is an Kaycha Labs certification. The results relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Void after 1 year from test end date. Cannabinoid content of batch material may vary depending on sampling error. IC=In-control QC parameter, NC=Non-controlled QC parameter, ND=Not Detected, NA=Not Analyzed, ppm=Parts Per Million, ppb=Parts Per Billion. Limit of Detection (LoD) and Limit Of Quantitation (LoQ) are terms used to describe the smallest concentration that can be reliably measured by an analytical procedure. RPD=Reproductibility of two measurements. Action Levels are State determined thresholds for human safety for consumption and/or inhalation. The result >99% are variable based on uncertainty of measurement (UM) for the analyte. The UM error is available from the lab upon request. The "Decision Rule" for the pass/fail does not include the UM. The limits are based on F.S. Rule 64-4.310.

Sue Ferguson

Lab Director

State License # n/a ISO Accreditation # 17025:2017

12/02/21

Signature